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Abstract. Various image filters for applications in the area of computer
vision require the properties of the local statistics of the input image,
which are always defined by the local distribution or histogram. But the
huge expense of computing the distribution hampers the popularity of
these filters in real-time or interactive-rate systems. In this paper, we
present an efficient and practical method to estimate the local weighted
distribution for the weighted median/mode filters based on the kernel
density estimation with a new separable kernel defined by a weighted
combinations of a series of probabilistic generative models. It reduces
the large number of filtering operations in previous constant time algo-
rithms [1, 2] to a small amount, which is also adaptive to the structure of
the input image. The proposed accelerated weighted median/mode filters
are effective and efficient for a variety of applications, which have compa-
rable performance against the current state-of-the-art counterparts and
cost only a fraction of their execution time.

1 Introduction

A variety of popular image filters in computer vision are related to the local
statistics of the input image. For example, the median filter outputs the point
that reaches half of the local cumulative distribution [3, 4, 1]. The weighted mode
filter [5–7] tries to find the global mode of the local distribution. Not only that,
the widely popular bilateral filter [8], can be expressed as the mean of the local
distribution that is estimated by a Gaussian kernel density estimator [9]. Pro-
vided a guidance feature map (e.g., image intensity, patch and etc.), the weighted
local distribution can be modified to jointly reflect the statistics of both the in-
put image and the feature map, which in addition contributes to several kinds
of structure- or style-transfer applications, like depth or disparity refinement in
the stereo matching [5, 1] and joint filtering [10].

Not explicitly estimating the local distribution, there are a certain number
of approaches that are designed for accelerating the bilateral filter or similar
weighted average filter, such as the domain transform filter [11], adaptive mani-
folds filter [12] and the guided filter [13]. However, efficient methods for imme-
diate estimation of the local distributions need further attention because many
applications require direct operations on these distributions. Although the brute-
force implementation is still adopted in many computer vision systems, its high
complexity limits its popularity and hampers real-time systems and applications.
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Constant time algorithms for the estimation of the local distributions (or his-
tograms) have been proposed in the literature. For instance, the constant time
weighted median filter [1] and the smoothed local histogram filters [2]. The com-
plexity of these methods relies on the number of bins to generate the histograms
as well as the complexity of the filtering operation that calculates the value of
each bin. Even though the complexity of filtering operations have been reported
as O(1) in the literature, an 8-bit single channel gray-scale image usually needs
256 bins to produce a sufficiently accurate result, not to mention continuous or
high-precision images.

Related to but different from these methods, in this paper we proposed a
novel distribution estimation method for the sake of efficiency to accelerate vari-
ous image filters. It is based on the kernel density estimation with a new separable
kernel defined by a weighted combination of a series of probabilistic generative
models. The resultant distribution has a much reduced number of filtering op-
erations which are also independent of the values of the bins. The number of
filtering operations is exactly the number of models used, and is usually smaller
than the number of bins so as to abate the computational complexity. The re-
quired models can be the uniform quantization of the domain of the input image,
or locally adaptive to the structures of the inputs. Since it is always the case that
a local patch of an image can be decomposed into a limited number of distinct lo-
cal structures, only a small amount of the locally adaptive models are necessary,
thus the complexity is further reduced. We also accelerated the weighted mode
filter and the weighted median filter by leveraging the proposed distribution es-
timation method. They own comparable performance in various applications but
a faster speed in comparison with current state-of-art algorithms.

2 Related Work

Weighted average filters, like the bilateral filter [8, 10], implicitly reflect proper-
ties of the local distribution. The brute-force implementation generally suffers
the issue of inefficiency. In [14] an approximated solution was proposed by for-
mulating the bilateral filtering as a high-dimensional low-pass filter, and can
be accelerated by downsampling the space-range domain. Following this idea,
different data structures have been proposed afterwards to further speedup the
filters [15–17, 12], in which the adaptive manifolds [12] caught our attention and
inspired our research to construct the locally adaptive models. Guided filter [13]
is a popular and efficient constant-time alternative. It can imitate a similar filter
response as that of bilateral filter, but enforces local linear relationship between
the filtering output and the guidance image. Domain transform filter [11] also
produces a similar constant-time edge-preserving filter and earns real-time per-
formance without quantization or coarsening.

Median filter might be the first image filter that explicitly applies the local
histogram (a discretized distribution). Unlike the weighted median filter, which
has no abundant work focusing on its acceleration, the unweighted counterpart
receives several constant time solutions. One kind of these algorithms was present
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in the literature to lessen the histogram update complexity [3, 4]. Another ver-
sion introduced by Kass and Solomon [2] drawn the isotropic filtering into the
construction of a so-called smoothed local histogram, which is a special case of
the kernel density estimation, and the median and mode of this histogram are
thus estimated by a look-up table.

The weighted median filter as well as the weighted mode filter, however,
cannot directly duplicate the success in the previous discussion, since the weights
are spatially varying for each local window. Min et. al. [5] proposed a weighted
mode filtering that adopts bilateral weights for the depth video enhancement, but
it lacks an efficient implementations. The constant time weighted median filter [1]
for disparity refinement is one of the most recent works that try to accelerate the
local distribution construction. This method performs edge-preserving filtering
to produce the probability of each bin in the local histogram. The number of bins
determines the number of filtering operations applied. Thus it is less effective
when hundreds of intensity levels are required, especially for the processing of
the natural images.

3 Motivation

Estimating the probability distribution of each pixel is an essential element in
various kinds of image filters like the weighted median filter [1], the weighted
mode filter [5] and the bilateral filter [8] as a special case. A conventional way
is to construct a weighted histogram of the target pixel in its local window, but
a more flexible treatment is to exploit the kernel density estimation [7] so as to
favor a smooth approximation [2].

Denote the probability distribution at pixel x as h(x, ·) and is specifically
defined as

h(x, g) =
1

Z(x)

∑
y∈N (x)

w(x,y)φx (g, fy) , (1)

where fy is the input data of pixel y. N (x) is a local window centered at x, and
the normalized factor Z(x) =

∑
y∈N (x) w(x,y). The weight w(x,y) depends on

the spatial relationship and the similarity of the guidance features between x
and y. The kernel φx(g, fy) varies in different applications. For discrete signals,
a common kernel is the Kronecker delta function δ(·), thus h(x, ·) becomes a
weighted histogram [1]. An alternative common choice is the Gaussian kernel.

The approximated probability distribution immediately gets involved in the
weighted median filter or the weighted mode filter since it replaces the value
of a pixel by the median or the global mode of h(x, ·). The median is usually
estimated by tracing the cumulative distribution [2]:

C(x, ĝ) =

∫ ĝ

−∞
h(x, g)dg =

1

Z(x)

∑
y∈N (x)

w(x,y) ·
∫ ĝ

−∞
φx (g, fy) dg (2)

until it meets 0.5. Because it involves a high dimensional filtering operation in
estimating C(x, ĝ) at each ĝ, too many samples of ĝ will bring about heavy
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computational cost. On the other hand, typical ways to find the mode are the
fixed-point iteration [6] or sampling by a look-up table and interpolation [2]. The
key element in either method is the gradient of h(x, g) as

∂h(x, g)

∂g

∣∣∣
g=ĝ

=
1

Z(x)

∑
y∈N (x)

w(x,y) · ∂φx (g, fy)

∂g

∣∣∣
g=ĝ

, (3)

which is also the output after filtering. Similar problem occurs since the number
of filtering operations depends on the number of iterations to converge or the
sampling density of the look-up table.

To eliminate this issue, in the following sections we define a novel separable
kernel as a weighted combination of a series of probabilistic generative models to
decrease the number of filtering operations required to represent the distribution,
and exploit the constant time filters [13, 11] to reduce the complexity of the
filtering operation.

4 Accelerating the Distribution Estimation

In this paper, we propose a novel approach to approximate the probability dis-
tribution by defining a new kernel based on a series of probabilistic generative
models, which can be factorized explicitly so as to extract the filtering operations
in advance before the distribution construction. With the proposed kernel, we
introduce the accelerated versions of the weighted mode filter and the weighted
median filter. We will show it later that they have excellent performance in terms
of both quality and efficiency in various applications.

4.1 Kernel Definition

Assume the input image is modeled by several (e.g., L) models throughout the
whole pixel domain, each of which is governed by a distribution as p(ηx|l), l ∈
L = {1, 2 . . . , L} at each pixel x. These models actually act as prior knowledge
to represent distinct local structures in the input image. Two pixels x and y
are similar if they both have high probabilities to agree with the lth model (see
Fig. 1) as the following kernel:

κl(fx, fy) = px(fx|l)py(fy|l) (4)

=

∫
ηx∈Hx

p(fx|ηx)p(ηx|l)dηx ·
∫
ηy∈Hy

p(fy|ηy)p(ηy|l)dηy, (5)

where px(fx|ηx) is the data likelihood. Hx and Hy are the domains of ηx and
ηy, respectively. When all the L models are available, the overall kernel can be
further defined as their weighted combination:

κ(fx, fy) =

L∑
l=1

κl(fx, fy)px,y(l) =

L∑
l=1

px(fx|l)py(fy|l)px,y(l), (6)
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Fig. 1. Illustration of the proposed kernel. (a) shows a 1D signal and two pixels x and
y. (b) represents the construction of κ(fx, fy), where the mean values of three models
are shown in three different colors. It measures the similarity of fx and fy by evaluating
the summation of the joint likelihood of them w.r.t. each model.

where px,y(l) is the compatibility prior that measures the similarity between
x and y on the lth model. This kernel is valid since it is an inner product in
the L-dimensional feature space. What’s more, it is able to reliably approximate
some popular kernels like Gaussian kernel [12] or Kronecker delta kernel [1].

4.2 Probability Distribution Approximation

The approximated distribution can be written similarly as Eq. (1) by replacing
φx(g, fx) with the proposed kernel as

h̃(x, g) ∝
∑

y∈N (x)

w(x,y)

L∑
l=1

px(g|l)py(fy|l)px,y(l) =

L∑
l=1

px(g|l) · ψx(l). (7)

The filtering operation ψx(l) =
∑

y∈N (x) w(x,y)py(fy|l)px,y(l) is independent of
g, and thus the approximated distribution becomes a mixture of L densities. In-
stead of immediately filtering φx(g, fy) for each g (cf., Eq. (1)) to obtain h(x, g),
the proposed method can precompute ψx(l) by merely L filtering operations in
total and then estimate h̃(x, g) provided the priors p(g|l). The proposed kernel
approximates the distribution by extracting the filtering operations independent
of g and therefore reduces the complexity of the distribution construction.

The cumulative distribution is hence C̃(x, ĝ) ∝
∑L
l=1 ψx(l)

∫ ĝ
−∞ p(g|l)dg and

the gradient ∂h̃(x,g)
∂g |g=ĝ ∝

∑L
l=1 ψx(l)∂p(g|l)∂g |g=ĝ, both of which do not contain

additional filtering operations except those for ψx(l), and thus have the potential
to accelerate the weighted median/mode filters.

Relationship with the Constant Time Weighted Median Filter [1] (CT-
Median) Let the L models be equally quantized levels µl, l ∈ L of the intensity
space, and denote p(ηx|l) = δ(ηx−µl), p(fx|ηx) = δ(fx− ηx), px,y(l) = 1/L. We

have the distribution as h̃(x, g) ∝
∑L
l=1 δ(g − µl) ·

∑
y∈N (x) w(x,y)δ(fy − µl),

which is exact the form introduced in CT-median.

4.3 Accelerated Weighted Median/Mode Filters

In this section, we propose the accelerated versions of the weighted median/mode
filters based on the kernel discussed previously. In particular, we apply the Gaus-
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Fig. 2. Locally adaptive models (LAM) v.s. uniformly quantized models (UQM). A 1D
signal is extracted from a gray-scale image shown in the left column and marked by
orange. Both the LAM and UQM models (L = 3) are exploited to represent the signal,
which are shown in the right column. The top row is by UQM models, the bottom
one is by LAM models. The LAM models are adaptive to the local structures and own
superior performance on representing the signal with limited number of models.

sian model to define the probabilities for its efficiency in various image processing
applications.

Kernel Definition The first task is to define the L models that are suitable
as the priors to represent the input image.

Case-I: Uniformly Quantized Models (UQM). A simple strategy is just to
equally quantize the domain f , the mean of each model represents a quantization
level µl and the diagonal elements in Σl is set as the square of half of the
quantization interval. For a multi-dimensional image, each channel shares the
same process. Specifically, µlx = µl,Σl

x = Σl at the lth model for all x. It
can well represent cartoon style images and disparity maps from frontal parallel
stereos. However, more quantization levels are required to present a local complex
structure under a sufficient accuracy, as shown in Fig. 2.

Case-II: Locally Adaptive Models (LAM). Locally adaptive models ought to
be a superior idea since they tend to describe the local structures by fewer
models. The idea behind it is that we assume a Gaussian mixture model in any
local patch. Each model actually represents a local mean estimator. Therefore,
we just need the number of models is a few more than the number of modes in
the local distribution. For example, a natural image shown in Fig. 2 can be well
represented by the LAM models. On the contrary, the UQM models cannot fit
the local distribution if its number is insufficient.

The popular EM algorithm [18] is abandoned for the training of the LAM
models due to its high complexity and instability to ensure a good estimation. In
this paper, we exploit an alternative and more efficient way to train the required
models. Similarly as [12], we also use a hierarchical segmentation approach to
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iteratively separate pixels from distinct structures, which act as local clusters,
into different models. We set the segments as Sl, l ∈ L. This method involves
simple low-pass filtering and fast PCA operations [12], thus is efficient in imple-
mentation. The mean and variance of the pixel x for the lth model are

µlx =
1

Wl
x

∑
y∈N (x)

θlyfy, Σl
x =

1

Wl
x

∑
y∈N (x)

θlyfyf
>
y − µlxµlx

>
, (8)

where θy = 1[y∈Sl] means the mask indicating pixels inside Sl. 1[·] is the indicator
function that equals to 1 when the input argument is true. The neighborhood
N (x) is set as the same local window as Eq. (7). Wl

x =
∑

y∈N (x) θ
l
y is the

normalization factor.
Therefore, the prior probability for the lth model is p(ηx|l) = N(ηx|µlx,Σl

x).
Assume the data likelihood p(fx|ηx) = N(fx|ηx,Σn), where Σn denotes the
noise variance. Thus we have

κl(fx, fy) = N(fx|µlx,Σn + Σl
x) ·N(fy|µly,Σn + Σl

y). (9)

Given a prior tells the compatibility between pixel x and y for the lth model
as px,y(l) = exp(− 1

2 (µlx − µly)>Σ−1n (µlx − µly)), the kernel κ(fx, fy) is therefore
defined accordingly.

The proposed kernel otherwise needs two parameters Σn and L. For a highly
complex image, L should be increased to fit the local structure to a large extent.
Large Σn brings about smoother results but on the contrary, the necessary
number of models can be reduced as well.

Probability Distribution Approximation Based on the proposed kernel,
the approximated probability distribution to each pixel x is

h̃(x, g) =
1

Z̃(x)

L∑
l=1

N(g|µlx,Σn + Σl
x)ψx(l), (10)

where ψx(l) =
∑

y∈N(x) w(x,y)N (fy|µly,Σn+Σl
y)px,y(l) and Z̃(x) =

∑L
l=1 ψx(l).

The second step of the weighted median/mode filters is to estimate ψx(l), l ∈
L by filtering N(fy|µly,Σn + Σl

y) characterized by the properties of w(x,y) ×
px,y(l). This weight defines a joint filtering with the guidance of the guided
feature map and the estimated models. Here we denote its parameters as ω. In
this paper, we choose two kinds of filters: Guided filter (GF) [13] and Domain-
transform filter (DF) [11]. They both have O(1) complexity and approximate
the bilateral weight. GF has better performance on transferring local structures
from the guided feature map to the target image while DF is natural to process
higher dimensional images. Different applications exploit different weights.

The overall algorithm about the distribution approximation acceleration is
summarized in Algorithm 1. The parameter setup refers to Sec. 5.1.



8 Lu Sheng, King Ngi Ngan, Tak-Wai Hui

Algorithm 1: Distribution Approximation Acceleration

Input : Input image Fi, guided image Fg, parameter set {Lth, r, σn,ω};
Output: Approximated distribution h̃(x, g);
// 1. model generation

1 if model type is LAM then

2 {Sl| l ∈ L} ← hierarchical segmentation [12] of Fi given Lth and r, σn;
3 for l← 1 to L do

4 θly = 1[y∈Sl], Wl
x =

∑
y∈N (x) θ

l
y;

5 µl
x ← 1

Wl
x

∑
y∈N (x) θ

l
yfy, Σl

x = 1
Wl

x

∑
y∈N (x) θ

l
yfyf

>
y − µl

xµ
l
x
>

;

6 Ml ← {µl
x,Σ

l
x| ∀x}, l ∈ L // model parameters

7 else

8 {µl,Σl| l ∈ L} ← quantize the image domain of Fi uniformly, given Lth ;

9 Ml ← {µl
x = µl,Σl

x = Σl| ∀x}, l ∈ L // model parameters

// 2. distribution approximation

10 ψx(l)←
∑

y∈N(x) w(x,y)N (fy|µl
y,Σn + Σl

y)px,y(l), ψx(l)← ψx(l)/
∑L

l=1 ψx(l);

11 h̃(x, g)←
∑L

l=1N
(
g|µl

x, σ
2
nId + Σl

x

)
ψx(l);

Weighted Median Filter The weighted median filter wants to find the me-
dian value throughout the given probability distribution. Since the resultant
distribution is actually a mixture of Gaussian models, an accelerated method is
proposed by estimating the cumulative probability C̃(x, µlx) at the mean value
µlx of each model. The median value is approximated by interpolating two adja-
cent cumulative probabilities C̃(x, µkx) and C̃(x, µk+1

x ), where C̃(x, µkx) ≤ 0.5 and
C̃(x, µk+1

x ) ≥ 0.5. In detail,

gmed
x ≈ 0.5− C̃(x, µkx)

C̃(x, µk+1
x )− C̃(x, µkx)

(µk+1
x − µkx) + µkx. (11)

In practice we find the proposed method is simple and effective after all. However,
please notice that the median should be tracked per-channel for UQM models.

Weighted Mode Filter The weighted mode filter is to find the global mode
of h̃(x, g). Simple fixed-point iteration is sufficient for the proposed Gaussian
models. Let the gradient ∂h̃(x, g)/∂g = 0, we have the fixed-point iteration as

gn+1
x =

(
L∑
l=1

Blx(gnx)
(
Σn + Σl

x

)−1)−1( L∑
l=1

Blx(gnx)
(
Σn + Σl

x

)−1
µlx

)
, (12)

where Blx(gnx) = N(gnx |µlx,Σn+Σl
x)ψx(l). Eq. (12) recursively goes to the closest

mode and thus a good initialization g0x is necessary to avoid being stuck in wrong

local mode. In practice, let g0x = µm
?

x where m? = arg maxm
∑L
l=1 Blx(µmx ) is

both effective and reasonable.
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5 Experimental Results and Discussions

5.1 Implementation Notes

We have implemented the proposed weighted mode filter and the weighted me-
dian filter on a MATLAB platform. The results reported were measured on a 3.4
GHz Intel Core i7 processor with 16 GB RAM.

Parameter Definition All input images and guidance images were normalized
into [0, 1] for the convenience of parameter definition. The data variance Σn =
σ2
nId, where σn is the standard variance of the noise, Id is an identity matrix and
d is the dimension of the input image. The guided filter (GF) and the domain
transform filter (DF) share the same parameter setting, i.e., r = σs and ε = σ2

r

(ω = {r, ε} for GF, ω = {σs, σr} for DF). r and σs was measured in pixels. For
fair comparisons, the number of iterations in the weighted mode filter was set
as 10 for all the experiments.

Number of Models An automatic criterion [12] stops generating the LAM
models when a high percentage of pixels are close to at least one model. In
detail, the criterion of closeness is set as ‖fx−µlx‖Σn

≤ 1. Together with a user-
given threshold Lth, the LAM models generation will be stopped when either the
criterion or Lth is reached. In addition, the number of the UQM models shared
the same threshold Lth, and no automatic stopping criterion was applied.

Compared Methods In this paper, we compared our proposed filters with
two popular filters: the constant time weighted median filter (CT-median) [1]
and the bilateral weighted mode filter (BF-mode) [5]. The parameters of CT-
median were given by the authors [1] and those of BF-mode were optimized by
exhaustive search. The number of bins in the reference methods was fixed to 256
per-channel [1, 2, 5].

5.2 Performance Evaluation

Runtime Comparison Fig. 3 shows the execution time comparison between
our method and the brute-force constant time algorithm (cf. Eq. (1)) with GF
weights to construct the distribution. Both LAM and UQM models were under
evaluation. Related parameters were fairly configured. The y-axis is the ratio of
runtime of the proposed method w.r.t. the reference method, which assumed 256
discretized bins. L was defined manually without automatic stopping criterion.
Both the two proposed methods only possess a fraction of the runtime against
the reference one and are nearly proportion to the number of models. But the
LAM spends a little bit more time because of additional filtering operations at
the model generation step. Notice that when L is around 50, the execution time
of the proposed methods becomes half of that of the reference one.
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Fig. 3. Execution time comparison on the distribution construction w.r.t. the number
of models. The input is a 8-bit single-channel image and the guidance is a 3-channel
image. The reference method is brute-force and traverses 256 discretized bins.

The Number of Necessary LAM models In fact, natural images, no matter
color images or disparity/depth maps, are always locally smooth. There is little
necessity to generate so many LAM models (e.g., more than 60) to fit the local
distribution. To validate this observation, we estimated the LAM models for all
the color images in a published image dataset BSDS300 [19] with the threshold
of Lth = 64 and examined the distribution of necessary number of models. The
automatic stopping criterion was triggered when no less than 99.9% pixels were
fulfilled the constraint in Sec. 5.1.

Results are illustrated in Fig. 4, where the left one was obtained by a window
size 21×21 (i.e., r = 10) and the right one was 11×11 (i.e., r = 5). Σn = 0.01×I3

for both cases. The majority of images generally required at most 50 models to
meet the criterion. What’s more, the smaller the window size is, the fewer number
of necessary models are required, which verifies the discussions in Sec. 4.3. Based
on these results, we conclude that for the general case, the number of LAM
models required for a natural image merely exceeds a certain value under a
given window size. As a typical case, let the window size be 21× 21 or smaller,
we can safely constrain the threshold to Lth = 64, and the runtime on the
probability distribution construction is always fewer than half of the brute-force
implementation, as shown in Fig. 3.

As a conclusion, the gain of the proposed method is generally 2 ∼ 3× faster
than the brute-force one for the gray-scale images. And it can be increased to 6 ∼

10 20 30 40 50 60
0

0.05

0.1

Number of models (L)

|N (x)| = 21× 21

10 20 30 40 50 60
0

0.05

0.1

Number of models (L)

|N (x)| = 11× 11

Fig. 4. The distribution of the number of necessary local adaptive models in BSDS300

dataset. Left : the window size is 21×21. Right : the window size is 11×11. The smaller
the window size, the fewer number of locally adaptive models is necessary.
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Raw input Ground truth CT-median,

Err. 2.76

BF-mode,

Err. 2.37

L = 7,

median,

Err. 4.96

L = 15,

median,

Err. 3.96

L = 31,

median,

Err. 3.34

L = 7,

mode,

Err. 2.62

L = 15,

mode,

Err. 2.36

L = 31,

mode,

Err. 2.41

Fig. 5. Depth map enhancement on tsukuba. The first row shows the raw input dispar-
ity map, the ground truth, results by CT-median [1] and BF-mode [5] respectively, from
left to right. Disparity maps in the 2nd and 3rd rows were obtained by the proposed
weighted median filter and weighted mode filter, under different number of models.
The models were generated by the LAM models. The error was evaluated on bad pixel
ratio with the threshold 1. GF weights were chosen and related parameters were fairly
configured.

9× for color images as the number of channels is increased. For disparity/depth
maps and cartoon images, the number of necessary models can be reduced even
further because of their high structure homogeneity.

5.3 Applications

Depth Map Enhancement Depth maps with low resolution and poor quality,
e.g., structural outliers, depth holes, noise and etc., can be enhanced with the
guidance of the registered high resolution texture images [5, 1]. It is a popular
and practical post-processing for acquiring visual plausible and high accurate
depth map from various depth acquisition techniques, like stereo, ToF-camera
or Kinect. Two state-of-the art approaches that take advantage of the statistics
information of the depth map are BF-mode [5] and CT-median [1]. Our meth-
ods, both the weighted mode filter and the weighted median filter, gain similar
performance against them and require much less cost.

Fig. 5 shows the results of a disparity map named tsukuba. The raw input
was generated by a simple box-filter aggregation [20] followed by left-right check
and hole-filling. LAM models were adopted for all these results and we fixed the
number of models utilized. Small L (e.g., L = 7) limits the LAM to define enough
models to cover all the local structures, thus tended to output slightly blurred
results or assign incorrect values in comparison with the referenced methods.
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L = 7,

LAM

L = 7,

UQM
L = 7,

LAM

L = 7,

UQM

Fig. 6. Results of the weighted mode filter with 7 models.

Fortunately, by adopting a few more models, the results become stable and
similar to the reference results. For instance, the BF-mode in our implementation
required 15.09 sec to process the tsukuba image, but the proposed weighted mode
filter with 31 LAM models only cost 5.23 sec. What’s more, the bad pixel ratio of
the proposed method (Err. 2.41) is similar as that (Err. 2.37) of BF-mode, but
the PSNR is otherwise higher (25.28dB) against that of the BF-mode (25.09dB).

Although a small L of the LAM models cannot cover all the details of the
input image, it still has a superior performance against the UQM models with the
same L. As shown in Fig. 6, when L = 7, the LAM models captured more details
of the two test disparity maps and produced smoother outputs than the UQM
models Ṫhe staircase artifact of the UQM models also occurs at BF-mode and
CT-median, since both of them are based on a discretized weighted histogram.
When the bin number is not sufficient, the quantization artifact will happen
around the smooth and slanted surfaces.

JPEG Artifact Removal JPEG compression is a lossy compression scheme
that usually brings about quantization noise and block artifact. CT-median has
been proven effective in eliminating this compression artifact in clip-art cartoon
images [1]. However, since CT-median encourages piecewise constant intensi-
ties/colors, its drawback is apparent when processing natural images.

As shown in Fig. 7(b) and its zoomed-in patch, CT-median forced the image
eyes into several distinct layers, pixels inside one layer seemed constant every-
where. Contrary to it, exploiting the LAM models, our method represented a
piecewise smooth result, as shown in Fig. 7(c). Not only the compression artifact
was removal, but the structure of the input image was still preserved. The UQM
models, unfortunately, had a slightly worse performance than that of LAM. The
reason is straightforward as it also tried to recover piecewise constant colors. In
terms of runtime comparison, both the LAM and UQM models only spent a small
fraction of the runtime owned by CT-median (i.e., 88.134 sec) to obtain Fig. 7(b).
The LAM models required L = 15,Σn = 0.072 × I3 and |N (x)| = 11 × 11, it
cost 16.74 sec in total. The UQM models also owned L = 15, and the runtime
was a little faster as 15.54 sec.

More Applications We show two additional applications to indicate the poten-
tial of the proposed weighted median filter and the weighted mode filter. Fig. 8
shows the detail enhancement for a natural rock image by the proposed weighted
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(a) Input (b) CT-median (c) Ours-LAM (d) Ours-UQM

Zoom in of (a) Zoom in of (b) Zoom in of (c) Zoom in of (d)

Fig. 7. JPEG compression artifact removal results by the weighted median filter. (a)
The input degraded eyes image. (b) CT-median [1]. (c) The proposal weighted median
filter with the LAM models and (d) is with the UQM models. The second row shows
the corresponding zoomed-in patches. The DF weights were chosen and all the related
parameters were fairly configured. Best viewed in electronic version.

median filter under the LAM models. The result is plausible for naked eyes with-
out apparent artifact. Fig. 9 presents the joint upsampling of a low-resolution
and noisy disparity map with the guidance of a registered high-resolution image.
Both of the proposed filters generated satisfactory results but the result by the
weighted median filter tended to be smoother and introduced a little blurring
artifact, while that by the weighted mode filter was sharper and contained a
slight of staircase artifact.

6 Conclusion and Future Work

In this paper, we propose a novel distribution construction method for accelerat-
ing the weighted median/mode filters by defining a new separable kernel based
on the probabilistic generative models. Different from traditional methods that
need quite a number of filtering operations to estimate a sufficiently accurate
distribution, the proposed approach only requires a finite and a small amount of
filtering operations based on the structure of the input image. The accelerated

Fig. 8. Detail enhancement by the proposed weighted median filter under the LAM
models. From left to right, the original rock image, after edge-preserving smoothing,
and the detail enhanced image. GF weights were chosen.
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Ground truth Ours-median Ours-mode

Fig. 9. Joint depth map upsampling. The input disparity map was 8× upsampled by
the proposed weighted median filter and the weighted mode filter under the LAM
models. The raw input diparity map is shown in the top-left corner of the leftmost
image. GF weights were chosen.

weighted median filter and weighted mode filter are thus introduced and utilized
into various applications from depth map enhancement, joint depth upsampling,
outlier removal, detail enhancement and so on.

As a part of the future work, the extension for video processing is interesting
and meaningful. A more robust and efficient way to estimate the locally adaptive
models shall be a great benefit. Moreover, increasing the efficiency on the median
tracking and mode seeking can further accelerate the proposed filters.

References

1. Ma, Z., He, K., Wei, Y., Sun, J., Wu, E.: Constant time weighted median filtering
for stereo matching and beyond. In: Proc. IEEE Int. Conf. Comput. Vis. (2013)

2. Kass, M., Solomon, J.: Smoothed local histogram filters. ACM Trans. Graph. 29
(2010) 100
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